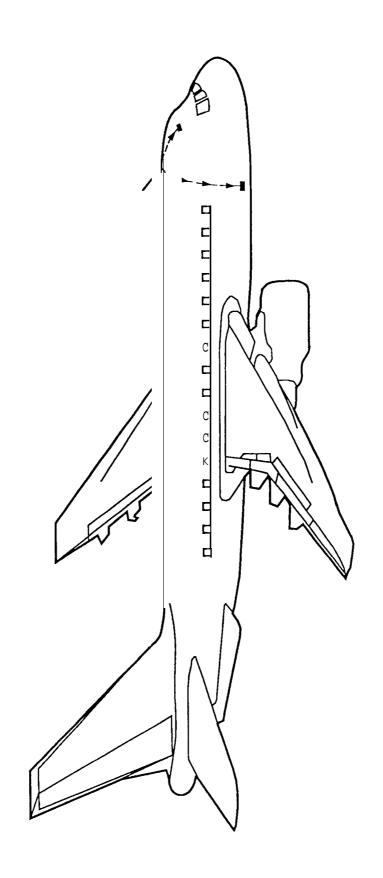
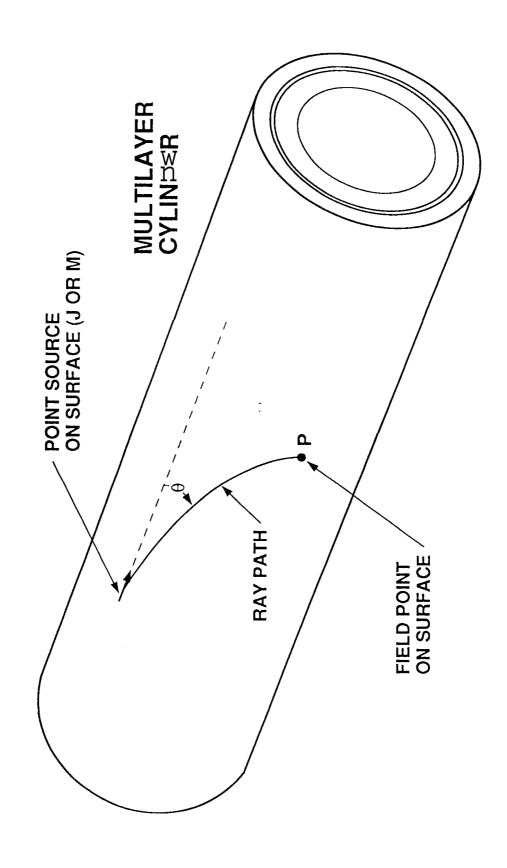
On the Character of the Zeros of Polynomials Relevant to the Small Curvature Approximation in Asymptotic Diffraction Theory

Ronald J. Pogorzelski
Jet Propulsion Laboratory
California Institute of Technology

> MENNO COUPLING ON ON DIRFRAME

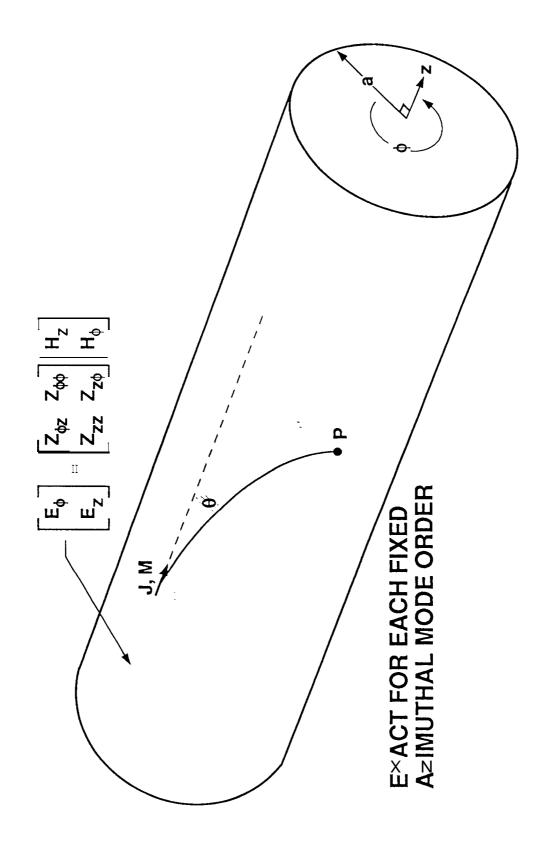


COUPLING GEOMETRY



. .

SUPFOCE IMPEDANCE MOJEL



Vector Potentials - I

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{F} \end{bmatrix} = \frac{1}{16\pi} \sum_{\mathbf{h}=-\infty}^{\infty} \int_{-\infty}^{\infty} H_{\nu}^{(2)}(\beta_{1}a) \left\{ H_{\nu}^{(1)} \beta_{1}a \right\} \begin{bmatrix} \mathbf{T} + H_{\nu}^{(2)} \beta_{1}a \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{F} \end{bmatrix}$$

$$\times \left| \frac{\mathbf{J}}{\mathbf{M}} \right| = -\mathrm{j}\alpha (z-z') = -\mathrm{j}\nu \phi - \phi_n' \quad \mathrm{d}\nu \,\mathrm{d}\alpha$$

where
$$\phi$$
, = ϕ ' + $2n\pi$ and $\beta_1 = \sqrt{k_1^2 - \alpha^2}$

$$L_{i} = \frac{\frac{1}{2} k_{j} H_{\nu}^{(i)}(\beta_{j}a)}{\beta_{j} H_{\nu}^{(i)}(\beta_{j}a)} \qquad Q_{ij} z = \frac{H_{\bullet}^{(i)}(z)}{H_{n}^{(i)}(z)}$$

Vector Potentials - II

$$\mathbf{R_{B_{11}}} = \left\{ \begin{bmatrix} \Delta_{\mathbf{Z}} & \mathbf{\eta_{1}} & \mathbf{L_{11}} \end{bmatrix} \begin{bmatrix} \mathbf{L_{21}} & \mathbf{\eta_{1}} & \mathbf{L_{22}} & \mathbf{\eta_{1}} & \mathbf{L_{22}} \\ \mathbf{\eta_{1}} & \mathbf{L_{22}} & \mathbf{\eta_{1}} & \mathbf{L_{22}} \end{bmatrix} \begin{bmatrix} \mathbf{L_{21}} & \mathbf{\eta_{1}} & \mathbf{L_{22}} & \mathbf{\eta_{22}} \\ \mathbf{\eta_{22}} & \mathbf{\eta_{12}} \end{bmatrix} - \frac{\alpha \nu}{\mathbf{a} \beta_{1}^{2}} - \frac{\mathbf{Z} \mathbf{Z} \mathbf{Z}}{\mathbf{Z} \boldsymbol{\phi}} \mathbf{1} \begin{bmatrix} \mathbf{\alpha} \boldsymbol{\nu} & \mathbf{Z} \boldsymbol{\phi} \boldsymbol{\phi} \\ \mathbf{a} \boldsymbol{\beta_{1}^{2}} \end{bmatrix} + \frac{\mathbf{Z} \boldsymbol{\phi} \boldsymbol{\phi}}{\mathbf{Z} \mathbf{Z} \boldsymbol{\phi}} \mathbf{1} \end{bmatrix} \right\} \mathbf{\Delta}$$

$$\mathbf{R}_{\mathsf{B}_{12}} = \left\{ \left[\begin{array}{ccc} \mathbf{L}_{21} & \mathbf{L}_{11} & \alpha \nu \\ \overline{\eta}_{1} & 1 \left[\begin{array}{ccc} \alpha \rho \\ \overline{\eta}_{1} \end{array} \right] + \frac{Z_{\phi\phi}}{Z_{Z\phi}} \right] \right\} \left[\begin{array}{ccc} Q_{12} \\ \overline{\Lambda} \end{array} \right] \eta_{1}^{2}$$

$$R_{B_{21}} = \left\{ \left[\eta_{1} L_{11} - 77_{1} L_{21} \right] \left[\frac{\alpha v}{a \beta_{1}^{2}} - \frac{Z_{ZZ}}{Z_{Z\phi}} \right] \right\} \frac{Q_{12}}{\eta_{1}^{2} \Delta}$$

$$\mathbf{R_{B_{22}}} = \left\{ \begin{bmatrix} \mathbf{A}_{z} & & & & \\ & \mathbf{Z}_{Z\phi} & & & & \\ & & & & \\ \end{bmatrix}_{1} \begin{bmatrix} \mathbf{L}_{11} & + & 1 & & \alpha v & & \mathbf{Z}_{ZZ} & & \alpha v & \\ & & & & & \\ & & & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & & \\ & & & \\ \end{bmatrix}_{1} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{1} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{1} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{1} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2} \begin{bmatrix} \mathbf{A}_{z} & & & \\ & & & \\ \end{bmatrix}_{2}$$

$$\Delta = \left\{ \left[\begin{array}{cccc} \frac{\Delta_{\mathbf{Z}}}{\overline{Z}_{\mathbf{Z}\phi}} - \eta_{1} \mathbf{L}_{21} \right] \left[-\frac{\mathbf{L}_{2}}{\eta_{1}} - \frac{1}{Z_{\mathbf{Z}\phi}} \right] + \left[\begin{array}{cccc} \alpha \nu \\ a\beta_{1}^{2} \end{array} - \frac{Z_{\mathbf{Z}\mathbf{Z}}}{Z_{\mathbf{Z}\phi}} \right] \left[\begin{array}{ccccc} \alpha \nu \\ a\beta_{1}^{2} \end{array} + \frac{Z_{\phi\phi}}{Z_{\mathbf{Z}\phi}} \right] \right\}$$

where
$$\mathbf{A}_z = \mathbf{Z}_{\phi \mathbf{Z}} \mathbf{Z}_{\mathbf{Z}\phi} - \mathbf{Z}_{\phi\phi} \mathbf{Z}_{\mathbf{Z}\mathbf{Z}} + \mathbf{t} = \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \\ \mathbf{I}_1 \end{bmatrix}$$
,

Stationary Phase Result

$$v_{11}(\xi) = \frac{4k_1m}{\pi \beta_1^2 a} \frac{1}{2} e^{j\pi/4} \left[\frac{\xi}{\pi} \int_{-\infty}^{\infty} \left[L_{21} + \frac{\eta_1}{Z_2 \phi} \right] \frac{1}{\Delta} e^{-j\xi \tau} d\tau \right]$$

$$\mathbf{v}_{12}(\xi) = \frac{4k_1 m}{\pi \beta_1^2 a} \frac{1}{2} e^{\mathbf{j}\pi/4} \left[\frac{\xi}{\pi} \int_{-\infty}^{\infty} \left[\frac{\alpha \nu}{a \beta_1^2} + \frac{Z_{\phi} \phi}{Z_{Z\phi}} \right] \frac{1}{\Lambda} e^{-\mathbf{j}\xi \tau} d\tau \right]$$

$$v_{21}(\xi) = \frac{4k_1m}{\pi \beta_1^2 a} \frac{1}{2} e^{j\pi/4} \left[\frac{\xi}{\pi} \int_{-\infty}^{\infty} \frac{\alpha \nu}{a \beta_1^2} - \frac{Z_z z_1}{Z_z \phi_1} \frac{1}{\Lambda} e^{-j\xi \tau} d\tau \right]$$

$$v_{22}(\xi) = \frac{4k_1m}{\pi \beta_1^2 a} \frac{1}{2} e^{j\pi/4} \left[\frac{\xi}{\pi} \int_{-\infty}^{\infty} \left[\frac{L_{21} - \frac{n^2}{\eta_1 Z_2 \phi}}{1} \right] \frac{1}{\Delta} e^{-j\xi \tau} d\tau \right]$$

 $m = (\beta_1 a/2)^{1/3}$, $v = m\tau + \beta a$, $\xi = m \phi - \phi$

Asymptotic Evaluation -

$${
m L_{i,j}} = rac{{
m j} k_{
m j}}{eta_{
m j}} {
m H}_{{\cal V}}^{(i)} (eta_{
m j}a) pprox rac{{
m j} k_{
m j}}{meta_{
m j}} {
m W}_{
m 2}^{\prime}(au) } \ {
m R_{
m j}} {
m H}_{{\cal V}}^{(i)} (eta_{
m j}a) \ {
m m} {
m R_{
m j}} {
m W}_{
m 2}(au)$$

where
$$w_2(\tau) = \sqrt{\pi} [B_i(\tau) - j A_i(\tau)]$$
 and A_i and B_i are Airy functions

$$\Re = \frac{W_2'}{W_2} \sim \sqrt{\tau} - \frac{1}{4\tau} - \frac{5}{32\tau^{5/2}} - \frac{15}{64\tau^4} - \dots$$

Asymptotic Evaluation -

$$\mathbf{v} \sim (\Re + C_1)(\Re + C_2^{2} + C_0(\tau + C_3^{2}(\tau + C_4))$$

$$\tau - \Re^2 + \frac{1}{2\Re} + \frac{1}{2\Re} + \frac{5}{32\Re^7}$$

$$\Re^2 \Delta \sim C_0(\Re - q_1^{-1} \Re - q_2)(\Re - q_3)(\Re - q_4)(\Re - q_5)(\Re - q_6)$$

Asymptotic Evaluation -

$$\frac{f(\Re)}{\Delta} = \sum_{n=1}^{6} \frac{A_n}{(\Re - q_n)}$$

$$v_{ij} \sim \sum_{n=1}^{6} \int_{-\infty}^{\infty} \frac{A_n}{(\Re - q_n)} e^{-j\xi \tau} d\tau$$

$$\Re = \frac{W_2'}{W_2} \sim \sqrt{\tau} - \frac{1}{4\tau} = \frac{5}{32\tau^{5/2}} - \frac{15}{64\tau^4} - \cdots$$

Asymptotic Evaluation Summary

- Large ξ: Residue series
- Small ξ : Power series in inverse Powers of τ leading to a series of positive powers of ξ
- •If q is large, the power series is poorly convergent unless ξ is extremely small.
- For large q, Wait and Bremmer obtain a "small curvature" approximation via the Laplace transform BUT,
 - One must find the zeros of high degree polynomials.
 - One must find these zeros efficiently if the approximation is to be useful.

•QUESTIONS:

- **How** can one find the q's efficiently?
- How does the approximation improve as the number of **q's is** increased?

Approximation of the q's - I

First approximate:

$$C_1 \approx C_2 \approx \sqrt{C_1 C_2}$$

$$C_3 \approx C_4 \approx \sqrt{C_3 C_4}$$

Note that:

$$C_0 \sim m^{-4}$$

$$C_1 \sim C_2 \sim m$$

Recall that $\Re^p \Delta$ is a polynomial for appropriate even integer, p.

Now factor $\Re^p \Delta$ as follows.

$$\Re^{p/2} [(R + \sqrt{C_1 C_2}) + j \sqrt{C_0} (\tau + \sqrt{C_3 C_4})] \Re^{p/2} [(\Re + \sqrt{C_1 C_2}) - j \sqrt{C_0} (\tau + \sqrt{C_3 C_4})]$$

Approximation of the q's - II

If $\tau \sim \Re^2$, each factor is quadratic:

$$j\sqrt{C_0} \Re^2 + \Re + (\sqrt{C_1C_2} + j\sqrt{C_0} \sqrt{C_3C_4})$$

If $\tau \sim \Re^2 + \frac{1}{2\Re}$, each factor is cubic:

$$\left(j\sqrt{C_0} \, \Re^2 + \Re + (\sqrt{C_1C_2} + j\sqrt{C_0} \, \sqrt{C_3C_4})\right)\Re + \frac{j}{2}\sqrt{C_0}$$

If $\tau \sim \Re^2 + \frac{1}{2\Re} + \frac{1}{8\Re^4}$, each factor is sixth degree:

$$\left(j \sqrt{C_0} \ \Re^2 + \Re + (\sqrt{C_1 C_2} + j \sqrt{C_0} \ \sqrt{C_3 C_4}) \right) \Re^4 + \frac{j}{2} \sqrt{C_0} \ \Re^3 + \frac{j}{8} \sqrt{C_0}$$

Sixth Degree Example

two roots Large R

$$\left(j_{1}C_{0} R^{2} + R + (_{1}C_{1}C_{2} + _{1}C_{0} _{1}C_{3}C_{4})\right)R^{4} + \frac{j}{2}C_{0} R^{3} + \frac{j}{2}C_{0} = 0$$

Small R (four roots)

small For

$$\sqrt{c_1c_2} + \frac{1}{2\sqrt{c_0}} \sqrt{c_3c_4} \Re^4 + \frac{1}{2\sqrt{c_0}} \Re^3 + \frac{$$

耳

Sixth Degree Example - II

If the \Re^3 term is neglected,

$$\Re \approx \left| \left(-\frac{j}{8} \sqrt{C_0} \right) / \left(\sqrt{C_1 C_2} + j \sqrt{C_0 \sqrt{C_3 C_4}} \right) \right|^{1/4} \sim \text{m}^{-3/4}$$

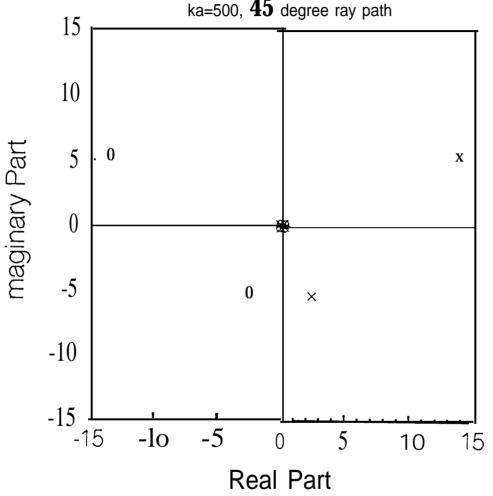
$$(\sqrt{C_1C_2} + j\sqrt{C_0} \sqrt{C_3C_4}) \Re^4 + \frac{j}{2}\sqrt{C_0} \Re^3 + \frac{j}{8}\sqrt{C_0} = 0$$

$$- m^{-1} - m^{-17/4} - m^{-2}$$

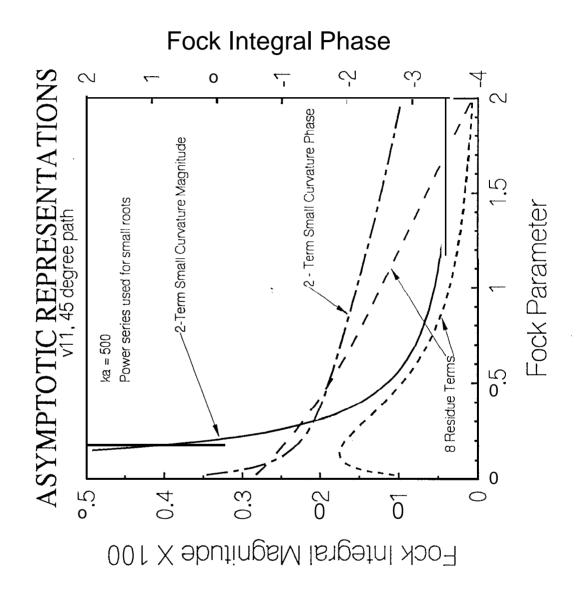
Also, then,

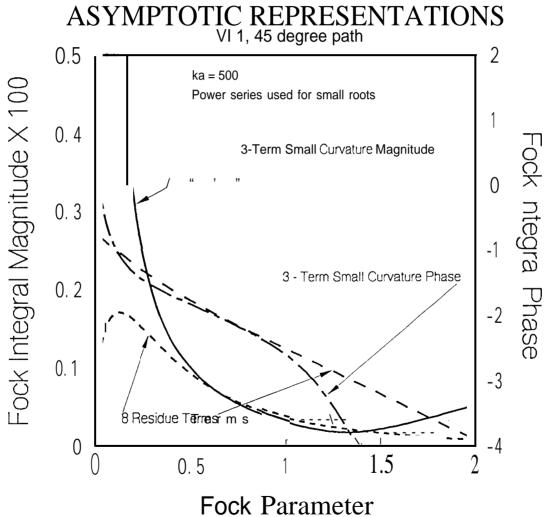
$$\Re \approx \left[\left(\frac{j}{8} \sqrt{C_0} \right) / \left(\sqrt{C_1 C_2} - j \sqrt{C_0} \sqrt{C_3 C_4} \right) \right]^{1/4}$$

ZEROS OF SIXTH DEGREE FACTORS ka=500, 45 degree ray path



- X First Factor
- O Second Factor





Concluding Summary

- This approximation technique yields very good starting point for iterative solution.
 - Four significant figures in about two to five iterations.
 - Computation time almost negligible.
- As more terms are used:
 - Four basic roots persist.
 - Added roots cluster arount the origin yielding slowly varying terms.
 - Approximation is <u>imporved in mid-range</u> of the Fock parameter via the added slowing varying terms.